

REAMERS

Table of contents

Symbol explanation

Reamers overview

Reamers Toolfinder

Contents overview – Countersinks

Technical Information

Symbol explanation

Toolfinder – Reamers

Cutting speed v_c low high Solid carbide high-speed reamers high ▲ highest economical machining due to very high cutting speeds and feeds. ▲ suitable for large and medium volumes. Solid carbide reamers ▲ significant increase in tool life at higher cutting speeds compared to HSS. ▲ suitable for large, medium and low volumes. Feed f_z **HSS** reamers ▲ universal, cost effective reamer for flexible single part production. ▲ suitable for single part production. NO

Toolfinder – Reamers

HSS – Reamers

Mole diameter in mm	Standard tolerance	Through hole	Blind hole	Int. coolant supply	Steel Stainless steel Cast iron Non-ferrous metals Heat-resistant Hardened materials
18,00-65,00	H7 1/100	~	~	1	• • • •
				~	
12,50-40,00	H7 1/100	1	1	~	• • • •
				~	
8,00-30,20	H7 1/100	✓	1	~	• • • • •
				~	
5,60-25,89	H7 1/100	~	~	~	• • •
4,00-16,00 2,96-20,05	H7 1/100	~	~	1	• •
4,00-16,00 2,96-20,05	H7 1/100	~	~	~	•
2,96-20,05	1/100	~	~	~	•
4,00–16,00 2,96–20,05	H7 1/100	~	~	~	•
2,96-20,05	1/100	1	1	1	•
2,00-30,00	H7				• • • •
0,59-12,05	1/100 H7				• • • •
1.50, 20.00	U7				_
0,95–12,00	1/100	~			• • • • •
1,00-20,00	H7	~			• • • • •
1,00-20,00	H7	1			• •
4,00-20,00	H7	1			
3,76-12,00	1/100				
16,00-50,00	Η7	1			• • • •
1,00-40,00	Η7	1			• • • • •

Countersinks Overview Hole diameter in mm Hardened materials Non-ferrous metals Heat-resistant Stainless steel Point angle Cast iron Coating Steel ØDC Indexable Insert Counterbore Tool 15,0-33,0 0 HSS – Counterbores 6,0-20,0 Solid Carbide Countersinks 90° 6,3-31,0 0 0 0 12,5-25,0 60° • 0 0 . 10,4-31,0 90° 0 0 **HSS Countersinks** 6,3-25,0 60° 0 • • 0 • 16,0-80,0 60° • • 0 • Ti50 90° 4,3-31,0 • 0 0 • 4,3-31,0 90° • 0 0 • TiN 5,0-31,0 90° 0 ٠ • 0 TiAIN 5,0-31,0 90° 0 • 0 • • TiAIN 6,3-31,0 90° • 6,3-31,0 90° • 16,5-80,0 90° 0 • 0 • . 6,3-25,0 120° • 0 • • 0

Counterbore, DIN 373 • with fixed pilot

- ▲ with 3 cutting edges, right-hand flutes for counterbores
- ▲ for countersinking to suit hexagon socket screws

Through hole

Core hole

Thread	DC_2 z9	DCONMS h9	0AL	DC_1 e8
	mm	mm	mm	mm
M3	6	5.0	71	2.5
M3	6	5.0	71	3.2
M3	6	5.0	71	3.4
M4	8	5.0	71	3.3
M4	8	5.0	71	4.3
M4	8	5.0	71	4.5
M5	10	8.0	80	4.2
M5	10	8.0	80	5.3
M5	10	8.0	80	5.5
M6	11	8.0	80	5.0
M6	11	8.0	80	6.4
M6	11	8.0	80	6.6
M8	15	12.5	100	6.8
M8	15	12.5	100	8.4
M8	15	12.5	100	9.0
M10	18	12.5	100	8.5
M10	18	12.5	100	10.5
M10	18	12.5	100	11.0
M12	20	12.5	100	10.2
M12	20	12.5	100	13.0
M12	20	12.5	100	13.5

Counterbore, DIN 373

Scope of supply:

Counterbores M3; M4; M5; M6; M8; M10 in case

Countersink 90°

			C 1
	! _		
←DC_2→			୍ୟ ୨
DC_2 ₂₉ DC_1 DCONMS _{h6} OAL			
mm mm mm mm 6.3 1.5 5 45 8.3 2.0 6 50 10.4 2.5 6 50 12.4 2.8 8 56	M3 M4 M5 M6 M8		
20.5 3.5 10 63 25.0 3.8 10 67 31.0 4.2 12 71	M10 M12 M16		
Steel			
Stamless steel			
Non ferrous metals			
Heat resistant allovs			
Hardened materials			

Countersink 60°

▲ with 3 cutting edges for countersinking and deburring in high-tensile steels, grey cast iron, aluminium alloys containing silicon and corrosion resistant steels

Countersink 90°

▲ with 3 cutting edges for countersinking and deburring in high-tensile steels, grey cast iron, alumínium alloys containing silicon and corrosion resistant steels

DC_2 _{z9}	DC_1	DCONMS h9	0AL

mm	mm	mm	mm
12.5	3.2	8	56
16.0	4.0	10	63
20.0	5.0	10	67
25.0	6.3	10	71

DC_2 z9 DC_	_1 DCONMS h9	0A
-------------	--------------	----

	mm	mm	mm
	111111	111111	111111
10.4	2.5	8	46
12.4	2.8	8	56
15.0	3.2	10	60
16.5	3.2	10	60
20.5	3.5	10	63
25.0	3.8	10	67
31.0	4.2	12	71

Countersink 90° with irregular pitch, DIN 335-C • all sizes with 3 cutting edges and highly irregular pitch, resulting in smooth running, excellent roundness and chatter reduction giving the highest surface quality

- ▲ special Ti coating
- ▲ for very high tool life in almost all materials

DCONMS

OAL

DC_1

⊢DC_2→

▲ greatly reduced axial and radial forces

0 •

•

0

DC_2 z9 DC_1 DCONMS OAL

mm	mm	mm	mm		
4.3	1.3	4	40	M2	
6.0	1.5	5	45	M3	
6.3	1.5	5	45		M3
8.0	2.0	6	50	M4	
8.3	2.0	6	50		M4
10.0	2.5	6	50	M5	
10.4	2.5	6	50		M5
11.5	2.8	8	56	M6	
12.4	2.8	8	56		M6
15.0	3.2	10	60	M8	
16.5	3.2	10	60		M8
19.0	3.5	10	63	M10	
20.5	3.5	10	63		M10
23.0	3.8	10	67	M12	
25.0	3.8	10	67		M12
31.0	4.2	12	71		M16

Steel Stainless steel

Cast iron

Non ferrous metals Heat resistant alloys

Hardened materials

Countersink 60°, DIN 334-C A 3 cutting edges for countersinking and deburring in virtually all materials

Countersink 60°, DIN 334-D A 3 cutting edges for countersinking and deburring in virtually all materials

MK	

4

DC_2 _{z9}	DC_1	DCONMS h9	0AL
mm	mm	mm	mm
6.3	1.6	5	45
8.0	2.0	6	50
10.0	2.5	6	52
12.5	3.2	8	56
16.0	4.0	10	63
20.0	5.0	10	67
25.0	6.3	10	71

DC_2 _{z9}	DC_1	0AL	МК
mm	mm	mm	
16.0	4.0	90	1
20.0	5.0	106	2
25.0	6.3	112	2
31.5	10.0	118	2
40.0	12.5	150	3
50.0	16.0	160	3
63.0	20.0	190	4
80.0	25.0	200	4

</120° HSS

Countersink 90°

▲ 3 cutting edges to avoid burrs and chatter marks when countersinking and deburring in virtually all materials.

Countersink 120°, factory standard-C3 cutting edges for countersinking and deburring in virtually all materials

DCONMS

DC 2

M

4

Problems / possible causes / solutions

Hole too large

- ▲ runout error for reamer in the spindle → use DAH compensation system and correct runout
- ▲ inaccurate alignment, reamer back-cuts → correct alignment and use DPS floating holder
- ▲ built-up edge → reduce cutting speed v_c for uncoated carbide cutting material, increase it for DST and coated cutting material or increase the oil content of the coolant
- ▲ reamer too large \rightarrow have reamer adapted

Hole too small

- \checkmark worn reamer \rightarrow have reamer adjusted, replaced or repaired
- ▲ reaming allowance too small → increase reaming allowance
- ▲ cutting force too high → reduce feed or select other lead geometry (ASG)
- ▲ reamer too small → have reamer adjusted, replaced or repaired

Conical hole, tapered backwards

- ▲ inaccurate alignment → correct alignment and use DPS floating holder
- ▲ misalignment between headstock and turret → correct turret and use DPS floating holder

Conical hole, tapered forwards

▲ poor alignment, cutting edges push initially → correct alignment and use DPS floating holder

Hole is not round

- ▲ reamer runout error too large → correct the runout with DAH compensation system
- ▲ alignment error → correct alignment error and use DPS floating holder
- \blacktriangle asymmetric initial cutting through angled entry surface \rightarrow countersink hole
- ▲ workpiece tensioning → correct clamping of the workpieces
- ▲ poor pre-machining → optimise pre-machining
- ▲ feed too high → reduce feed

Hole exhibits chatter marks

- ▲ cutting speed v_c too high → reduce cutting speed
- ▲ OAL to DC ratio too high→ reduce the speed of entry, pilot the bore or select other lead geometry (ASG)

Non clean-up

- ▲ built-up edge → reduce cutting speed v_c for uncoated carbide cutting material, increase it for DST and coated cutting material or increase the oil content of the coolant
- ▲ cutting edge worn→ have cutting edge repaired or replace the tool
- \blacktriangle reamer runout error \rightarrow correct the runout with DAH compensation system
- ▲ no or insufficient cooling, chips are getting trapped → use thro' coolant supply and increase coolant pressure
- ▲ unsuitable coolant → increase the oil content of the coolant
- ▲ incorrect cutting data → use data according to catalogue recommendation

Grooves in the hole "feed marking"

- ▲ faulty cutting edge (edge breakage) \rightarrow have reamer replaced or repaired
- ▲ built-up edges → reduce cutting speed v_c for uncoated carbide cutting material, increase it for DST and coated cutting material or increase the oil content of the coolant

Grooves in the hole "retraction marking"

- ▲ cutting edges moved too far out of the hole → move no more than lead length + 2 mm out of the hole
- ▲ material springs back → do not retract at high speed but with increased (2-3 times) feed rate

ł	

Reaming and Countersinking Technical Information

Types of wear

Wear on clearance face

Reduce the cutting speed and select a more wear resistant cutting material or coating.

Cutting edge breakage Reduce feed and reaming allowance. In the case of interrupted holes, use coated carbide instead of DST.

Cratering Reduce the cutting speed and use a positive cutting edge geometry.

Edge breakages Increase the cutting speed and use larger rake angle.

Notch wear Reduce the cutting speed and select a more wear resistant cutting material or coating.

Fatigue fracture Reduce feed, increase reamer stability.

Built-up edge Use positive cutting edge geometry, increase the oil content of the coolant, reduce the cutting speed v_c for uncoated carbide cutting material, increase it for DST and coated cutting material.

Cracks at right angles to the cutting edge Use sufficient coolant and thro' coolant, reduce the cutting speed.